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Abstract. This paper reports a57Fe Mössbauer spectroscopic study of a polycrystalline sample
of the substitutionally disordered, isostructural (fcc), ternary alloy Fe50Ni30Cr20 over the temp-
erature range 10 to 295 K. The data have been analysed in terms of the magnetic phase transitions
occurring in the alloy by examining the temperature dependence of the Mössbauer parameters.
The Curie temperature has been determined by fitting the average hyperfine-field values obtained
at different temperatures. In order to achieve a detailed understanding of the nature of the hyperfine-
field distribution corresponding to the M̈ossbauer spectra of this alloy, the curves representing the
probabilities of the hyperfine-field distributions versus the hyperfine field have been refitted by
using two independent Gaussians. On the basis of these fits, the local magnetic ordering of this
alloy at low temperature has been described. The data on the second-order Doppler shift have been
analysed in order to obtain an estimate of the Debye temperature,2D, and a description of the
lattice dynamics.

1. Introduction

Studies of magnetic materials exhibiting random mixtures of ferromagnetic and antiferro-
magnetic interactions have been attracting considerable interest. The iron-rich Fe–Ni binary
alloy system represents one such class, and is of paramount importance as far as basic
magnetism as well as industrial applications are concerned [1]. Depending upon the relative
concentration of Fe and Ni, it shows different magnetic properties. The Fe–Ni alloy having
35 at.% Ni is known as Invar alloy, and that having a Ni concentration of around 75 at.%
is known as permalloy. The latter type of alloy is characterized by very high permeability,
and is well accepted as being suitable for use in a wide range of industrial applications. The
addition of a third alloying element (e.g., Mo, Si, Ge, and Cr) increases the permeability, while
cost effectiveness can be achieved by replacing expensive nickel with a cheaper element. In
particular, the addition of Cr to Fe–Ni binary alloy can improve the magnetic properties to
a great extent [2]. To cite some typical industrial applications, Fe–Ni–Cr alloys are used
for manufacturing shield plates of floppy disk drives and video recorders, the iron cores of
watches, etc. From the physicist’s point of view, the Fe–Ni–Cr ternary alloy system provides
several challenging problems. Firstly, no one theory explains the magnetism of 3d-transition-
metal alloys. Secondly, the antiferromagnetism of Fe in the fccγ -phase arises due to negative
exchange interaction between the nearest-neighbour (nn) Fe atoms [3]. However, owing to
the γ–α phase transformation, it is not possible to study the antiferromagnetic phase of Fe
below 1180 K [4]. Addition of Cr or Mn or V stabilizes theγ -phase, and the complete region
extending from the antiferromagnetic (Fe-rich) to the ferromagnetic (Ni-rich) form within the
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Figure 1. Mössbauer spectra of Fe50Ni30Cr20 alloy at different temperatures, and the corresponding
hyperfine-field distributions.

same crystallographic fcc phase can be studied [4]. Keeping these aspects in mind, the Fe–Ni–
Cr alloys have been studied by different experimental techniques, such as neutron scattering [3–
6], magnetic measurements [4, 6], resistivity measurements [7], and magnetoresistance studies
[8]. The crystallographic and magnetic phases of this ternary alloy have been described by
Majumdar and von Blanckenhagen [4]. Also, the magnetic phase diagram of Fe80−xNixCr20

(10 6 x 6 30) has been established by Majumdar and von Blanckenhagen [4]. As early
as 1963, the hyperfine field in Fe–Ni binary alloy was studied by Johnsonet al [9], who
were followed by other workers using57Fe Mössbauer spectroscopy in the last three decades
[10]. Bendick and Pepperhoff [11] have applied this technique to find the Néel and Curie
temperatures of the Fe80−xNixCr20 alloys. Other M̈ossbauer spectroscopic studies of Fe–
Ni–Cr alloys have involved the study of the magnetic moments, corrosion protection, and
electrochemical processes [12–14]. With this in mind, detailed Mössbauer spectroscopic
studies ofγ -Fe80−xNixCr20 (x = 30, 26, 19, and 14) stainless steel alloys over the temperature
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Figure 1. (Continued)

range 10 to 295 K were studied by Bandyopadhyayet al [15]. In this paper, a detailed study
of the hyperfine-field distributions and lattice dynamics of the above alloy for the composition
with x = 30 made by using57Fe Mössbauer spectroscopy has been reported.

2. Experimental procedure

The sample used for the present Mössbauer spectroscopic studies is the same as that used
previously in magnetic measurements and neutron scattering experiments [4]. Transmission
Mössbauer spectra have been recorded over the temperature range 10 to 295 K. The spectra were
obtained using a M̈ossbauer spectrometer coupled to a multichannel analyser, and operated
in constant-acceleration mode. A57Co source embedded in a rhodium matrix (Amersham
International Limited, Amersham, UK) was used. The spectrometer was calibrated using a
standardα-Fe foil. The temperature-dependent measurements were made by using an exchange
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gas variable-temperature system obtained from JANIS, which is an integral part of a closed-
cycle helium cryostat. The analyses of the Mössbauer spectra were carried out with computer
programs using two methods. In the first method, a least-squares-fitting computer program
employing a Lorentzian shape for the peaks and an iterative procedure was used. In the second
method, the procedure of Window [16] was used to obtain the probabilities of the hyperfine-
field distributions,P(H), and the average hyperfine field:

〈H 〉W =
∫
HP(H) dH

/∫
P(H) dH.

3. Results and discussion

In this section, the hyperfine-field distributions of the Mössbauer spectra and the lattice
dynamics of the Fe50Ni30Cr20 sample will be discussed.

3.1. Study of the hyperfine-field distributions

The magnetic phase diagram [4] indicates that the alloy withx = 30 is paramagnetic in
the temperature region above 144 K. Mössbauer spectra of this alloy have been measured at
295, 240, 200, 175, 140, 135, 130, 125, 120, 115, 110, 90, 75, 70, 60, 50, 20, and 10 K,
and some of them are shown in figure 1 along with their hyperfine-field distributions. For
simplicity, all spectra are assumed to be single-component ones, as the experimental accuracy
does not warrant more detailed analysis. Each spectrum has been fitted by using the least-
squares-fitting method to calculate the overall linewidth of the spectra (0exp) and the area
under the resonance absorption curve(A) (which has been normalized to the area of the
spectra at 10 K and hence has no units). Figures 2(a) and 2(c) show the thermal evolutions
of these two parameters. The single average centre shift (δCS) with respect to the isomer
shift of α-Fe has been calculated by using Window’s method, and is shown in figure 2(b).
Since the spectra cannot be resolved properly even at 10 K, Window’s method have been
applied to obtain the evolution of the hyperfine-field distributions. Using the results on
the hyperfine-field distributions, the average hyperfine field,〈H 〉W, has been determined at
different temperatures. The variation of〈H 〉W with temperature is shown in figure 2(d).
From the curve fit of the temperature dependence of〈H 〉W, the value of the paramagnetic–
ferromagnetic transition temperature is found to beTC = 130±2 K. This value is very close to
the value ofTC = 126±0.2 K obtained from high-resolution AC susceptibility measurements
by Sinha and Majumdar [17]. Both of these values ofTC are substantially smaller than that
found earlier by Majumdar and von Blanckenhagen [4] from DC magnetization studies. The
reason for this is not certain, but it might be due to the different sensitivities of the methods used
for determiningTC for this intrinsically complex alloy. Each of the above parameters, i.e.,0exp,
A, δCS, and〈H 〉W, obtained from the two different analyses shows a transition zone, where
some sudden change of regime occurs. AsT decreases, the overall experimental linewidth
of the Mössbauer spectra (0exp), the normalized area under the resonance curve(A), and the
average hyperfine field (〈H 〉W) increase sharply, at around 130±2 K, whereas the centre shift
starts decreasing. This behaviour can be qualitatively considered as indicative of a magnetic
transition, because of the suddenness. It is to be noted that0exp increases with the decrease
of temperature in the paramagnetic region. This behaviour might be due to relaxation during
pre-transitional fluctuations. The method for obtaining the hyperfine-field distributions will
now be discussed.

Several methods have been proposed in the literature [16, 18–22] to yield a graph showing
the probability of a hyperfine field,P(H), for the measured M̈ossbauer spectra versus the
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Figure 2. The temperature dependences of (a) the full width at half-maximum,0exp (or FWHM),
(b) the centre shift (δCS), (c) the resonance absorption area (normalized)(A), and (d) the average
hyperfine field,〈H 〉W, of Fe50Ni30Cr20 alloy. The vertical arrows show the Curie temperature
TC = 130 K as obtained from M̈ossbauer spectra.

hyperfine field,H . Here, the method developed by Window [16] has been used, by following
the procedure suggested by Keller [23]. In this method,P(H) is described in terms of Fourier
series. Different parameters have been obtained from the analysis, such as the intensity ratio,
b (defined byI1:I2:I3 = 3:b:1), and the full widths at half-maxima (0W) of the sub-spectra.
The isomer shiftδIS andαIS give a direct measure of the correlation between the local isomer
shift and the hyperfine field [24]:

δIS(H) = δIS(H0)− αIS(H −H0). (1)

The parameters are obtained from the best least-squares fit to the measured Mössbauer spectra
by solvingN + 1 simultaneous equations, whereN is the number of summation terms in
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the Fourier series. The parameters are obtained for the most appropriate value ofN , which
has been found to beN = 10. ForN < 10, detailed information on the distributions will
be lost, whereasN > 10 gives rise to unphysical behaviour ofP(H). Larger values of the
summation terms in the Fourier series tend to fit the statistical fluctuations in the measured
spectrum, and hence unavoidable oscillations will occur. The parameters are almost constant
for 86 N 6 12. In this region ofN , a low-field tail arises which extends up toH = 0 for the
spectra taken at temperatures less than but close toTC.

Figure 3. Two-Gaussian fits to theP(H) distribution versusH curves at different temperatures.
Curves (a) represent the low-field-side Gaussians (+) and curves (b) the high-field-side
Gaussians (◦).

Hyperfine-field distributions obtained from Window’s method and the corresponding fitted
Mössbauer spectra are shown in figure 3. Since low-temperature Mössbauer spectra are
broad and are not well resolved, the distributions show a wide spread from 0 to 300 kOe
with a non-zero value ofP(H) atH = 0. To understand the nature of the hyperfine-field
distributions in detail, it is necessary to consider the nature of the sample used for the present
experimental studies. In the Fe–Ni–Cr system, six different pair interactions are present
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[3]. The interaction between Fe and Fe and that between Cr and Cr are antiferromagnetic,
whereas there is ferromagnetic interaction between Ni and Ni, between Fe and Ni, between
Fe and Cr, and between Ni and Cr. The values of the corresponding exchange integrals
have been calculated by Men’shikovet al [3]. Magnetic phase diagram investigations [4]
and several other experimental studies [4, 17] show a paramagnetic–ferromagnetic phase
transition in Fe50Ni30Cr20 alloy at low temperature. Therefore, it is logical to consider
that below the Curie temperature the bulk shows a ferromagnetic behaviour although the
interactions between Fe and Fe and those between Cr and Cr are antiferromagnetic. In
other words, ferromagnetic interactions dominate over antiferromagnetic interactions. The
ferromagnetic interactions are the consequence of long-range interactions of like spins in a
lattice that is identical with the atomic lattice. With decreasing temperature, the intensity
of the long-range ferromagnetic interaction and the degree of short-range spin ordering
increase. In this system, the Fe, as atoms having an Fe nearest-neighbour environment,
interact antiferromagnetically. Therefore the sample looks like antiferromagnetic (AFM)
clusters in a ferromagnetic (FM) matrix, where the local environment of the former iron
sites is ‘Fe rich’ and that for the latter sites is ‘Fe poor’ [25, 26]. Alternately, if the number
of such antiferromagnetic (AFM) clusters is negligible, then the sample can be viewed as
having two non-equivalent iron sites representing the spin localization in the finite (or short-
range) ferromagnetic (FM) spin clusters, and an infinite (or long-range) ferromagnetic matrix.
Such magnetically inhomogeneous coexistences are reflected in the wide distributions of the
Mössbauer hyperfine fields. The local magnetic moment in FM spin clusters is usually lower
than that in the FM matrix, but it is large in a FM matrix [27]. The bimodal nature of
the distributions is due to the existence of atoms with low internal fields [28]. Keeping
all of these points in mind, the hyperfine-field distributions have been fitted using two
independent Gaussians having different positions and widths, following Weiss [29], and the
results are shown in figure 3. On the basis of the above discussion, the two Gaussians on
the low- and high-field sides of theP(H) distributions have been assigned as the Gaussians
originating from the Fe atoms in the ‘low-field clusters’ and in the ‘high-field FM matrix’
respectively. It is to be noted that even after decomposing the hyperfine-field distributions
into two Gaussians, the value ofP(H) atH = 0 is still very high. This is due to the fact
that the Fe atoms in low-field clusters, which are responsible for the low-field Gaussian, have
hyperfine fields which are very small, and hence are not resolved. So they contribute a non-
zero value ofP(H) at H = 0 in the hyperfine-field distributions, as does the presence of
a paramagnetic phase. To check the validity of using the two-Gaussian fit to the hyperfine-
field distributions to segregate the clusters from the FM matrix, another approach has been
followed.

Table 1. Different parameters for the M̈ossbauer spectra obtained from the two analyses.

T 0W 0cl 0FM 〈H 〉W 〈H 〉cl 〈H 〉FM

(K) (mm s−1) (mm s−1) (mm s−1) (kOe) (kOe) (kOe) bW bcl bFM χ2
W χ2

Fit

10 0.34 0.34 0.32 95 41 52 2.0 1.8 2.1 1.8 1.2
20 0.35 0.32 0.30 94 45 48 2.3 1.7 2.2 1.4 1.4
50 0.34 0.30 0.28 84 51 30 2.5 1.8 2.4 1.8 1.9
60 0.35 0.25 0.24 78 53 27 2.5 2.1 2.3 2.0 1.7
90 0.36 0.24 0.23 50 35 14 2.6 2.6 2.5 3.1 2.3

110 0.33 0.26 0.24 28 22 5 2.9 2.9 2.8 3.4 2.6

Errors: ±0.05 ±0.05 ±0.01 ±3 ±3 ±3 ±0.01 ±0.01 ±0.01
(mm s−1) (mm s−1) (mm s−1) (kOe) (kOe) (kOe)
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Figure 4. The percentage variation of the normalized area for two Gaussians at different
temperatures.

In the second approach, the Mössbauer spectra below the Curie temperature have been
refitted with two Lorentzians corresponding to (i) the clusters (a narrow Lorentzian) and (ii) the
FM matrix (a wide Lorentzian). The line positions of the two Lorentzians are shown above
the fitted experimental spectra in figure 3. The upper lines correspond to the Lorentzian
representing the FM matrix and the lower ones are due to clusters. Different parameters of
these two sub-spectra are then compared to those obtained from the analysis made by Window’s
method, and these are shown in table 1. The linewidth obtained from Window’s method (0W) is
almost always constant and equal to 0.34 mm s−1. The linewidth corresponding to the clusters
(0cl) and the FM matrix (0FM) decreases continuously fromTC. The nature of the variation
of the average hyperfine fields corresponding to the clusters and the FM matrix, i.e.〈H 〉cl

and〈H 〉FM, is the same as that of〈H 〉W obtained from Window’s method. The variation of
b is nearly the same as that ofbFM, whereasbcl decreases belowbW andbFM. Theχ2-values
are also almost the same below the Curie temperatureTC. From the variation of the above
parameters, it is clear that the two-Gaussian fits to the hyperfine-field distributions are well
supported by the spectral fit made by using two Lorentzians, corresponding to low-field clusters
and the high-field FM matrix. The variations of〈H 〉W, 〈H 〉cl, and〈H 〉FM with temperature
can be understood on the basis of the data given in table 1. The sum of〈H 〉cl and〈H 〉FM is
approximately equal to〈H 〉W. The natures of the variations of〈H 〉W and〈H 〉FM are same,
whereas〈H 〉cl decreases with decrease in temperature. The variation of the normalized areas
of the two sub-Gaussians along with the variations of their peak positions are shown in figure 4
and figure 5 respectively. At a temperature of 10 K, the area of the low-field Gaussian is 45%,
whereas at the temperature of 110 K it is 80%. It is clear from figure 4 that as temperature
increases, the low-field clusters increase in number at the cost of loss of the high-field FM
matrix. The hyperfine fields corresponding to both peaks increase with decreasing temperature,
as shown in figure 5. This is probably due to the freezing of the transverse components of
the spins in both the clusters and the FM matrix. The same phenomena have been found by
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Figure 5. The variation of Hpeakfor the two Gaussians with temperature. (a) The crosses represent
the low-field-side Gaussian. (b) The circles represent the high-field-side Gaussian.

Kunitomi et al [30] for Cr–Fe alloy. It is well known that M̈ossbauer spectroscopy can ‘sense’
a spin-glass transition well above the actual spin-glass transition [31]. Therefore the nature of
figure 5 might be due to the trace of a spin-glass transition somewhere at low temperature in
this alloy.

3.2. Study of the lattice dynamics

To study the lattice dynamics of the Fe50Ni30Cr20 sample, the values of the centre shift (δCS) of
the Mössbauer spectra taken at different temperatures have been measured. The variation of
the centre shift (δCS) with temperature is shown in figure 2(b). It is well known that the centre
shift is the sum of the chemical isomer shift (δIS) and the contribution from the second-order
Doppler shift (δSOD). The centre shift,δCS, can be expressed as

δCS= δIS + δSOD. (2)

A non-zero contribution from the second term of the above expression arises due to the
relativistic effect whenever the source and absorber are at different temperatures, and is also
known as the thermal shift. This temperature-dependent part of the centre shift is caused by
the time dilation resulting from the thermal motion of theγ -ray emitting and absorbing nuclei.
If 〈v2〉 is the mean square velocity of the Mössbauer atom in the lattice, thenδSOD can be
expressed as

δSOD= −〈v2〉/2c. (3)

In this way the Doppler shift is related to the lattice dynamics of Debye solids. The temperature
dependence of the centre shift gives information about the vibrational states of Debye solids.
To calculate the Debye temperature,2D, the experimental data relating to the values of the
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Figure 6. A curve fitted (continuous curve) to the second-order Doppler shift values (δSOD) for
determining the Debye temperature (2D) of Fe50Ni30Cr20 alloy. The vertical arrow represents the
Curie temperature (TC).

centre shift have been fitted by using the following equation:

δCS(T1)− δCS(T2) = 9k

2Mc

[
T2

(
T2

2D

)3 ∫ 2D/T2

0

x3

x3− 1
dx − T1

(
T1

2D

)3 ∫ 2D/T1

0

x3

x3− 1
dx

]
(4)

where it has been assumed that the isomer shift (δIS) is independent of the temperature andT2 is
the lowest temperature. By using the minimum-standard-deviation method, the experimental
data relating to the values of the centre shift,δCS, have been fitted as shown in figure 6, which
gives the value of2D as 461 K. It is clear from figure 6 that there is hardly any change in
δSOD belowTC. This indicates that belowTC there is no effect from the electronic structural
anomaly or phonon softening of the Fe50Ni30Cr20 alloy. The softening corresponds to the case
of lattice vibration when the average velocity decreases. Again, the expression for〈v2〉 which
has been used for fitting the experimental data holds for a harmonic crystal. So, one could
conclude that belowTC the vibrational motion of Fe atoms remains harmonic. The average
velocity decreases belowTC, as discussed earlier. The decrease of〈v2〉 reflects the absence of
vibrational instabilities in the lattice belowTC.

4. Conclusions

The results obtained from the study of hyperfine-field distributions and the lattice dynamics
of Fe50Ni30Cr20 alloy made by using the57Fe Mössbauer spectroscopic technique can be
summarized as follows:

(a) The magnetic hyperfine-field distribution is bimodal in the sense that the low-field
component appears as a shoulder on the low-field side along with the main hyperfine
field.

(b) The total hyperfine field is due to the contribution of low-field spin clusters and the high-
field FM matrix. As the temperature decreases the low-field spin fraction decreases,
whereas the high-field spin fraction increases at the cost of loss of some of the low-spin
fraction. The nature of the variations of the peak positions of the two Gaussians indicates
probable freezing of the transverse components of the spins in clusters and the FM matrix.



Study of hyperfine-field distributions of Fe50Ni30Cr20 1209

(c) The Debye temperature calculated from the values of the centre shift at different
temperatures has a value of 461 K. From the nature of the fitted curve, one can conclude
that Fe atoms remain harmonic, and no phonon softening is observed below the Curie
temperature. This behaviour could be due to a phase transition from a paramagnetic to a
ferromagnetic state.
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